
Lecture 21: Min-Entropy Extraction via Small-bias
Masking
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Recall I

For a probability distribution X over {0, 1}n, we defined the
bias of X with respect to a linear test S ∈ {0, 1}n as follows

BiasX(S) = P [S · X = 0]− P [S · X = 1]

The probability that two independent samples from X and Y
turn out to be identical is defined as

Col(X,Y) =
1
N

∑
S∈{0,1}n

BiasX(S)BiasY(S)

X⊕ Y is a probability distribution over {0, 1}n such that
P [X⊕ Y = z ] is the probability that two samples according to
X and Y add up to z

BiasX⊕Y = BiasX · BiasY
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Recall II

The statistical distance between two probability distributions X
and Y over the sample space {0, 1}n is

2SD (X,Y) =
∑

x∈{0,1}n

∣∣P [X = x ]− P [Y = x ]
∣∣

We showed that

2SD (X,Y) 6 `2(BiasX − BiasY)
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Example 1

Let U represent the uniform distribution over the sample space
{0, 1}n

Note that, we have

BiasU(S) =

{
1, if S = 0
0, if S 6= 0

In fact, BiasX(0) = 1 for all probability distributions X
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Example 2 I

Let U〈v〉, for v ∈ {0, 1}n, represent the uniform distribution
over the vector space spanned by {v}, i.e., the set {0, v}
Let U〈w〉, for w ∈ {0, 1}n, represent the uniform distribution
over the vector space spanned by {w}, i.e., the set {0,w}
Prove: U〈v〉 ⊕ U〈w〉 = U〈v ,w〉.
Here, U〈v ,w〉 represents the uniform distribution over the set
spanned by {v ,w}. If v = w , then 〈v ,w〉 = {0, v}; otherwise
〈v ,w〉 = {0, v ,w , v + w}.
In general, for linearly independent vectors
v1, v2, . . . , vk ∈ {0, 1}n, we have

U〈v1,...,vk 〉 = U〈v1〉 ⊕· · · ⊕ U〈vk 〉

So, we conclude that

BiasU〈v1,...,vk 〉 = BiasU〈v1〉 · · ·BiasU〈vk 〉
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Example 2 II

Prove: There exists a subset T ⊆ {0, 1}n of size 2n−1 such
that BiasU〈v〉(S) = 1 if S ∈ T ; otherwise BiasU〈v〉(S) = 0.

Think: Which S have BiasU〈v〉⊕U〈w〉(S) = 0?
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Recall: Min-Entropy Sources I

Let X be a distribution over the sample space {0, 1}n

We say that the distribution X has min-entropy at least k if it
satisfies the following condition. For any x ∈ {0, 1}n, we have

P [X = x ] 6
1
2k

=:
1
K

This constraint is succinctly represented as H∞(X) > k

Intuition: The probability of any element according to the
distribution X is small. So, the outcome of X is “highly
unpredictable.” Furthermore, X associates non-zero probability
to at least K elements in {0, 1}n.
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Recall: Min-Entropy Sources II

We had seen that the collision probability of a high
min-entropy distribution is low.

Col(X,X) =
∑

x∈{0,1}n
P [X = x ]2 6

∑
x∈{0,1}n

P [X = x ]
1
K

=
1
K

This implies that ∑
S∈{0,1}n

BiasX(S)2 6
N

K

Or, equivalently, we write∑
S∈{0,1}n : S 6=0

BiasX(S)2 6
N

K
− 1
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Recall: Min-Entropy Sources III

Succinctly, we write

`∗2(BiasX) 6

√
N

K
− 1

Here `∗2(f ) is identical to the definition of `2(f ) except that it
excludes f (0)2 in the sum
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Small-bias Distribution

Let Y be a distribution over {0, 1}n

We say that Y is a small-bias distribution if

BiasY(S) 6 ε

for all 0 6= S ∈ {0, 1}n

Prove: A random probability distribution is a small-bias
distribution with very high probability
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Min-Entropy Extraction via Small-bias Masking

Let X be a min-entropy source with H∞(X) > k

Let Y be a small bias distribution such that BiasY(S) 6 ε, for
all 0 6= S ∈ {0, 1}n

We want to say that X⊕ Y is very close to the uniform
distribution U over the sample space {0, 1}n.

2SD (X⊕ Y,U) 6 `2(BiasX⊕Y − BiasU)
= `∗2(BiasX⊕Y − BiasU)
= `∗2(BiasX⊕Y)
= `∗2(BiasXBiasY)
6 ε`∗2(BiasX)

6 ε

√
N

K
− 1
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